
Bentley University GR526 in Python

Content extracted from the How to Data Website

This PDF generated on 03 August 2023

1

https://how-to-data.org/

Contents
GR526 is a graduate course at Bentley University that gives an overview of Calculus from a computational
viewpoint, for students who plan to study quantitative finance. The description from the course catalog can
be found here.

Topics include limits, derivatives, integrals, differential equations, implicit differentiation, Taylor series, and
continuous probability. By-hand computation is minimized and the use of a computer algebra system is
required, such as Maxima or SymPy.

Basic Symbolic Mathematics
• How to do basic mathematical computations
• How to create symbolic variables
• How to substitute a value for a symbolic variable

Functions and Graphs
• How to compute the domain of a function
• How to graph mathematical functions
• How to graph curves that are not functions
• How to write a piecewise-defined function
• How to graph a two-variable function as a surface

Equations and Systems
• How to write symbolic equations
• How to solve symbolic equations
• How to isolate one variable in an equation

Limits, Sequences, and Series
• How to compute the limit of a function
• How to define a mathematical sequence
• How to graph mathematical sequences
• How to define a mathematical series (and evaluate it)

Differentiation
• How to compute the derivative of a function
• How to compute the Taylor series for a function
• How to compute the error bounds on a Taylor approximation
• How to do implicit differentiation
• How to find the critical numbers of a function
• How to find the critical points of a multivariate function

Antidifferentiation
• How to write and evaluate indefinite integrals
• How to write and evaluate definite integrals
• How to write and evaluate Riemann sums

Differential Equations
• How to write an ordinary differential equation

2

https://catalog.bentley.edu/graduate/graduate-courses/gr/

• How to solve an ordinary differential equation

Content last modified on 03 August 2023.

3

How to do basic mathematical computations

Description
How do we write the most common mathematical operations in a given piece of software? For example, how
do we write multiplication, or exponentiation, or logarithms, in Python vs. R vs. Excel, and so on?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Mathematical notation Python code Requires SymPy?
𝑥 + 𝑦 x+y no
𝑥 − 𝑦 x-y no
𝑥𝑦 x*y no
𝑥
𝑦 x/y no
⌊ 𝑥

𝑦 ⌋ x//y no
remainder of 𝑥 ÷ 𝑦 x%y no
𝑥𝑦 x**y no
|𝑥| abs(x) no
ln 𝑥 log(x) yes
log𝑎 𝑏 log(b,a) yes
𝑒𝑥 E yes
𝜋 pi yes
sin 𝑥 sin(x) yes
sin−1 𝑥 asin(x) yes√𝑥 sqrt(x) yes

Other trigonometric functions are also available besides just sin, including cos, tan, etc.

Note that SymPy gives precise answers to mathematical queries, which may not be what you want.

sqrt(2)

√
2

If you want a decimal approximation instead, you can use the N function.

N(sqrt(2))

1.4142135623731
Or you can use the evalf function.

sqrt(2).evalf()

1.4142135623731

4

By contrast, if you need an exact rational number when Python gives you an approximation, you can use
the Rational function to build one. Note the differences below:

1/3

0.333333333333333

Rational(1,3)

1
3
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

5

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20do%20basic%20mathematical%20computations/Python,%20using%20SymPy.ipynb

How to create symbolic variables

Description
The word “variable” does not mean the same thing in mathematics as it does in computer programming. In
mathematics, we often use it to mean an unknown for which we might solve; but in programming, variables
typically have known values.

If we want to do symbolic mathematics in a software package, how can we tell the computer that we want
to use variables in the mathematical sense, as symbols whose value may be unknown?

Related tasks:

• How to substitute a value for a symbolic variable

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

You can define any number of variables as follows. Here we define 𝑥, 𝑦, and 𝑧.

var('x y z')

(𝑥, 𝑦, 𝑧)
You can tell that they are variables, because when you ask Python to print them out, it does not print a
value (such as a number) but rather just the symbol itself.

x

𝑥
And when you use a symbol inside a larger formula, it doesn’t attempt to compute a result, but stores the
entire formula symbolically.

formula = sqrt(x) + 5
formula

√𝑥 + 5
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

6

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20create%20symbolic%20variables/Python,%20using%20SymPy.ipynb

How to substitute a value for a symbolic variable

Description
If we’ve defined a symbolic variable and used it in a formula, how can we substitute a value in for it, to
evaluate the formula? This is often informally called “plugging in” a value.

Related tasks:

• How to create symbolic variables

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s assume we’ve defined a variable and created a formula, as covered in how to create symbolic variables.

var('x')
formula = x**2 + x
formula

𝑥2 + 𝑥
We can substitute a value for 𝑥 using the subs function. You provide the variable and the value to substitute.

formula.subs(x, 8) # computes 8**2 + 8

72
If you had to substitute values for multiple variables, you can use multiple subs calls or you can pass a
dictionary to subs.

var('y')
formula = x/2 + y/3
formula

𝑥
2 + 𝑦

3

formula.subs(x, 10).subs(y, 6)

7

formula.subs({ x: 10, y: 6 })

7
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

7

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20substitute%20a%20value%20for%20a%20symbolic%20variable/Python,%20using%20SymPy.ipynb

How to compute the domain of a function

Description
Given a mathematical function 𝑓(𝑥), we often want to know the set of 𝑥 values for which the function
is defined. That set is called its domain. How can we compute the domain of 𝑓(𝑥) using mathematical
software?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

We also need to import another tool that SymPy doesn’t pull in by default.

from sympy.calculus.util import continuous_domain

We can then ask about a function’s domain. We provide the function, the variable we’re asking about, and
the set of numbers we’re working inside of. For a simple one-variable function, we’re typically working in
just the real numbers.

var('x')
formula = 1 / (x + 1)
continuous_domain(formula, x, S.Reals)

(−∞, −1) ∪ (−1, ∞)
It’s sometimes easier to instead ask where the function is not defined. We can just ask for the complement
of the domain.

domain = continuous_domain(formula, x, S.Reals)
Complement(S.Reals, domain)

{−1}
The function is undefined only at 𝑥 = −1.

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

8

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20compute%20the%20domain%20of%20a%20function/Python,%20using%20SymPy.ipynb

How to graph mathematical functions

Description
Assume we have a mathematical formula and we would like to plot a graph of it using the standard Cartesian
coordinate system.

Related tasks:

• How to graph curves that are not functions
• How to graph mathematical sequences
• How to graph a two-variable function as a surface

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

You can write a formula and plot it in just a few lines of code.

var('x')
formula = x**2 - 5*x + 9
plot(formula)

9

Figure 1: png

<sympy.plotting.plot.Plot at 0x7f4b97b97520>

If you want to elimiate the extra bit of text after the graph, just assign the plot to a variable, as in p = plot(
formula).

By default, the graph always covers 𝑥 = −10 to 𝑥 = 10. You can change those limits as follows.

plot(formula, (x,1,3)) # just plot from x=1 to x=3

10

Figure 2: png

<sympy.plotting.plot.Plot at 0x7f4bbc097550>

You can also plot more than one function on the same graph.

formula2 = 10*sin(x) + 20
plot(formula, formula2)

11

Figure 3: png

<sympy.plotting.plot.Plot at 0x7f4b2dcd9c00>

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

12

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20graph%20mathematical%20functions/Python,%20using%20SymPy.ipynb

How to graph curves that are not functions

Description
Assume we have an equation in which 𝑦 cannot be isolated as a function of 𝑥. (The standard example is the
formula for the unit circle, 𝑥2 + 𝑦2 = 1.) We would still like to be able to use software to plot such curves.
How?

Related tasks:

• How to graph mathematical functions
• How to do implicit differentiation

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s consider the example of the unit circle, 𝑥2 + 𝑦2 = 1.

To plot it, SymPy first expects us to move everything to the left-hand side of the equation, so in this case,
we would have 𝑥2 + 𝑦2 − 1 = 0.

We then use that left hand side to represent the equation as a single formula, and we can plot it with SymPy’s
plot_implicit function.

var('x y')
formula = x**2 + y**2 - 1 # to represent x^2+y^2=1
plot_implicit(formula)

13

Figure 4: png

<sympy.plotting.plot.Plot at 0x7f67130cb460>

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

14

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20graph%20curves%20that%20are%20not%20functions/Python,%20using%20SymPy.ipynb

How to write a piecewise-defined function

Description
In mathematics, we use the following notation for a “piecewise-defined” function.

𝑓(𝑥) = {𝑥2 if 𝑥 > 2
1 + 𝑥 if 𝑥 ≤ 2

This means that for all 𝑥 values larger than 2, 𝑓(𝑥) = 𝑥2, but for 𝑥 values less than or equal to 2, 𝑓(𝑥) = 1+𝑥.

How can we express this in mathematical software?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

SymPy has support for piecewise functions built in, using Piecewise. The function above would be written
as follows.

var('x')
formula = Piecewise((x**2, x>2), (1+x, x<=2))
formula

{𝑥2 for 𝑥 > 2
𝑥 + 1 otherwise

We can test to be sure the function works correctly by plugging in a few 𝑥 values and ensuring the correct
𝑦 values result. Here we’re using the method from how to substitute a value for a symbolic variable.

formula.subs(x,1), formula.subs(x,2), formula.subs(x,3)

(2, 3, 9)
For 𝑥 = 1 we got 1 + 1 = 2. For 𝑥 = 2 we got 2 + 1 = 3. For 𝑥 = 3, we got 32 = 9.

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

15

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20write%20a%20piecewise-defined%20function/Python,%20using%20SymPy.ipynb

How to graph a two-variable function as a surface

Description
Assume we have a mathematical formula in the variables 𝑥 and 𝑦 and we would like to plot a graph of it
using a 3D coordinate system.

Related tasks:

• How to graph mathematical functions
• How to graph mathematical sequences

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

First, we need a two-variable function that we wish to plot.

var('x y')
formula = sin(x**2 + y**2)
formula

sin (𝑥2 + 𝑦2)
You can use plot3d, but you have to import it specifically, because it is not imported by default with the
rest of SymPy.

from sympy.plotting.plot import plot3d
plot3d(formula)

16

Figure 5: png

<sympy.plotting.plot.Plot at 0x7f085354fa60>

Specify the minimum and maximum values for both 𝑥 and 𝑦 as follows. In this example, I keep −𝜋 ≤ 𝑥 ≤ 𝜋
and − 𝜋

2 ≤ 𝑦 ≤ 𝜋
2 .

plot3d(formula, (x,-pi,pi), (y,-pi/2,pi/2))

17

Figure 6: png

<sympy.plotting.plot.Plot at 0x7f07e5878a60>

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

18

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20graph%20a%20two-variable%20function%20as%20a%20surface/Python,%20using%20SymPy.ipynb

How to write symbolic equations

Description
In programming, when we write a=b, the computer interprets it as an instruction, to change the value of a to
b. But in mathematics, 𝑎 = 𝑏 is a statement that 𝑎 and 𝑏 are equal; it’s often a starting point for algebraic
work. How can we write a mathematical equation using software?

Related tasks:

• How to solve symbolic equations
• How to isolate one variable in an equation

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s say we want to write the equation 𝑥2 + 𝑦2 = 2. We must first define 𝑥 and 𝑦 as mathematical variables,
then use SymPy’s Eq function to build an equation. This helps SymPy distinguish a mathematical equation
from a Python assignment statement.

var('x y')
Eq(x**2 + y**2, 2) # Two parameters: left and right sides of equation

𝑥2 + 𝑦2 = 2
You can make a system of equations just by placing several equations in a Python list.

system = [
Eq(x + 2*y, 1),
Eq(x - 9*y, 5)

]
system

[𝑥 + 2𝑦 = 1, 𝑥 − 9𝑦 = 5]
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

19

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20write%20symbolic%20equations/Python,%20using%20SymPy.ipynb

How to solve symbolic equations

Description
Once we’ve expressed an equation or system of equations using the technique from how to write symbolic
equations, we often want the software to solve the equation or system of equations for us.

Related tasks:

• How to isolate one variable in an equation

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

If your equation has just one variable, simply call solve on it. Note that you may get a list of more than
one solution.

var('x')
equation = Eq(x**2 + 3*x, -x + 9)
solve(equation)

[−2 +
√

13, −
√

13 − 2]
Sometimes you get no solutions, which is shown as a Python empty list.

solve(Eq(x+1, x+2))

[]
Sometimes the answers include complex numbers.

solve(Eq(x**3, -1))

[−1, 1
2 −

√
3𝑖
2 , 1

2 +
√

3𝑖
2]

To restrict the solution to the real numbers, use solveset instead, and specify the real numbers as the
domain.

solveset(Eq(x**3, -1), domain=S.Reals)

{−1}
(If solveset gives no solution, it shows it as the empty set symbol, ∅.)

You can solve systems of equations by calling solve on them.

20

var('x y')
system = [

Eq(x + 2*y, 1),
Eq(x - 9*y, 5)

]
solve(system)

{𝑥 ∶ 19
11 , 𝑦 ∶ − 4

11}

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

21

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20solve%20symbolic%20equations/Python,%20using%20SymPy.ipynb

How to isolate one variable in an equation

Description
Once we’ve expressed an equation or system of equations using the technique from how to write symbolic
equations, we often want the software to isolate one variable in terms of all the others.

Related tasks:

• How to solve symbolic equations

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s create an equation with many variables.

var('P V n R T')
ideal_gas_law = Eq(P*V, n*R*T)
ideal_gas_law

𝑃𝑉 = 𝑅𝑇 𝑛
To isolate one variable, call the solve function, and pass that variable as the second argument.

solve(ideal_gas_law, R)

[𝑃𝑉
𝑇 𝑛]

The brackets surround a list of all solutions—in this case, just one. That solution is that 𝑅 = 𝑃𝑉
𝑇 𝑛 .

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

22

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20isolate%20one%20variable%20in%20an%20equation/Python,%20using%20SymPy.ipynb

How to compute the limit of a function

Description
In mathematics, we write

lim
𝑥→𝑎

𝑓(𝑥)

to refer to the value that 𝑓 approaches as 𝑥 gets close to 𝑎, called “the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎.”

How can we use software to compute such limits?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Here we define a simple mathematical formula, 𝑥2−𝑥−2
𝑥−2 , and compute the limit as 𝑥 approaches 2. We use

SymPy’s built-in limit function, which takes the formula 𝑓(𝑥), the variable 𝑥, and the value 𝑎.

var('x')
formula = (x**2 - x - 2) / (x - 2)
limit(formula, x, 2)

3
You can also compute one-sided limits. For instance, the limit of |𝑥|

𝑥 is 1 as 𝑥 approaches 0 from the right,
but it is −1 as 𝑥 approaches 0 from the left.

limit(abs(x)/x, x, 0, "-") # "-" means from the left

−1

limit(abs(x)/x, x, 0, "+") # "+" means from the right

1
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

23

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20compute%20the%20limit%20of%20a%20function/Python,%20using%20SymPy.ipynb

How to define a mathematical sequence

Description
In mathematics, a sequence is an infinite list of values, typically real numbers, often written 𝑎0, 𝑎1, 𝑎2, …, or
collectively as 𝑎𝑛.

(Let’s assume that sequences are indexed starting with index 0, at 𝑎0, even though some definitions start
with index 1, at 𝑎1, instead.)

How can we express sequences in mathematical software?

Related tasks:

• How to define a mathematical series

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Sequences are typically written in terms of an independent variable 𝑛, so we will tell SymPy to use 𝑛 as a
symbol, then define our sequence in terms of 𝑛.

We define a term of an example sequence as 𝑎𝑛 = 1
𝑛+1 , then build a sequence from that term. The code

(n,0,oo) means that 𝑛 starts counting at 𝑛 = 0 and goes on forever (with oo being the SymPy notation for
∞).

var('n') # use n as a symbol
a_n = 1 / (n + 1) # formula for a term
seq = sequence(a_n, (n,0,oo)) # build the sequence
seq

[1, 1
2 , 1

3 , 1
4 , …]

You can ask for specific terms in the sequence, or many terms in a row, as follows.

seq[20]

1
21

seq[:10]

[1, 1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 1

7 , 1
8 , 1

9 , 1
10]

You can compute the limit of a sequence,

lim
𝑛→∞

𝑎𝑛.

24

limit(a_n, n, oo)

0
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

25

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20define%20a%20mathematical%20sequence/Python,%20using%20SymPy.ipynb

How to graph mathematical sequences

Description
Assume we have a mathematical sequence 𝑎0, 𝑎1, 𝑎2, … and we would like to plot a graph of it using the
standard Cartesian coordinate system. The result will not look like a curve, because a sequence is separate
points instead of a smooth curve.

Related tasks:

• How to graph mathematical functions
• How to define a mathematical sequence

Solution in Python using SymPy and Matplotlib
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

We will re-use the sequence defined in the task how to define a mathematical sequence.

var('n')
a_n = 1 / (n + 1)
seq = sequence(a_n, (n,0,oo))
seq

[1, 1
2 , 1

3 , 1
4 , …]

We can graph any finite range of any sequence as follows.

start = 0
stop = 10
import matplotlib.pyplot as plt
plt.plot(range(start,stop+1), seq[start:stop+1], '.')
plt.show()

26

Figure 7: png

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

27

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20graph%20mathematical%20sequences/Python,%20using%20SymPy%20and%20Matplotlib.ipynb

How to define a mathematical series

Description
In mathematics, a series is a sum of values from a sequence, typically real numbers. Finite series are written
as 𝑎0 + 𝑎1 + ⋯ + 𝑎𝑛, or

𝑛
∑
𝑖=0

𝑎𝑖.

Infinite series are written as 𝑎0 + 𝑎1 + 𝑎2 + ⋯, or

∞
∑
𝑛=0

𝑎𝑛.

How can we express series in mathematical software?

Related tasks:

• How to define a mathematical series

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

We define here the same sequence we defined in the task entitled how to define a mathematical sequence.

var('n') # use n as a symbol
a_n = 1 / (n + 1) # formula for a term
seq = sequence(a_n, (n,0,oo)) # build the sequence
seq

[1, 1
2 , 1

3 , 1
4 , …]

We can turn it into a mathematical series by simply replacing the word sequence with the word Sum. This
does not compute the answer, but just writes the series for us to view. In this case, it is an infinite series.

Sum(a_n, (n,0,oo))

∞
∑
𝑛=0

1
𝑛 + 1

You can compute the answer by appending the code .doit() to the above code, which asks SymPy to “do”
(or evaluate) the sum.

Sum(a_n, (n,0,oo)).doit()

∞
In this case, the series diverges.

28

We can also create and evaluate finite series by replacing the oo with a number.

Sum(a_n, (n,0,10)).doit()

83711
27720
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

29

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20define%20a%20mathematical%20series/Python,%20using%20SymPy.ipynb

How to compute the derivative of a function

Description
Given a mathematical function 𝑓(𝑥), we write 𝑓 ′(𝑥) or 𝑑

𝑑𝑥 𝑓(𝑥) to represent its derivative, or the rate of
change of 𝑓 with respect to 𝑥. How can we compute 𝑓 ′(𝑥) using mathematical software?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

In SymPy, we tend to work with formulas (that is, mathematical expressions) rather than functions (like
𝑓(𝑥)). So if we wish to compute the derivative of 𝑓(𝑥) = 10𝑥2−16𝑥+1, we will focus on just the 10𝑥2−16𝑥+1
portion.

var('x')
formula = 10*x**2 - 16*x + 1
formula

10𝑥2 − 16𝑥 + 1
We can compute its derivative by using the diff function.

diff(formula)

20𝑥 − 16
If it had been a multi-variable function, we would need to specify the variable with respect to which we
wanted to compute a derivative.

var('y') # introduce a new variable
formula2 = x**2 - y**2 # consider the formula x^2 + y^2
diff(formula2, y) # differentiate with respect to y

−2𝑦
We can compute second or third derivatives by repeating the variable with respect to which we’re differenti-
ating. To do partial derivatives, use multiple variables.

diff(formula, x, x) # second derivative with respect to x

20

diff(formula2, x, y) # mixed partial derivative

0
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

30

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20compute%20the%20derivative%20of%20a%20function/Python,%20using%20SymPy.ipynb

How to compute the Taylor series for a function

Description
Any function that has arbitrarily many derivatives at a given point can have a Taylor series computed for
the function centered at that point. How can we ask symbolic mathematics software to do this for us?

Related tasks:

• How to compute the error bounds on a Taylor approximation

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s define an example function whose Taylor series we’d like to compute.

var('x')
formula = exp(2*x + 1)
formula

𝑒2𝑥+1

Let’s ask for a degree-5 Taylor series centered at 𝑥 = 2. From the code below, you can tell that the third
parameter is the center point and the fourth parameter is the degree.

series(formula, x, 2, 5)

𝑒5 + 2 (𝑥 − 2) 𝑒5 + 2 (𝑥 − 2)2 𝑒5 + 4 (𝑥 − 2)3 𝑒5

3 + 2 (𝑥 − 2)4 𝑒5

3 + 𝑂 ((𝑥 − 2)5 ; 𝑥 → 2)

The final term (starting with O—oh, not zero) means that there are more terms in the infinite Taylor series
not shown in this finite approximation. If you want to show just the approximation, you can tell it to remove
the O term.

series(formula, x, 2, 5).removeO()

2 (𝑥 − 2)4 𝑒5

3 + 4 (𝑥 − 2)3 𝑒5

3 + 2 (𝑥 − 2)2 𝑒5 + 2 (𝑥 − 2) 𝑒5 + 𝑒5

You can also compute individual coefficients in a Taylor series by remembering the formula for the 𝑛th term
in the series and applying it, as follows. The formula for a series centered on 𝑥 = 𝑎 is 𝑓(𝑛)(𝑎)

𝑛! .

From the answer above, we can see that the coefficient on the 𝑛 = 3 term is 4
3 𝑒5.

n = 3
a = 2
diff(formula, x, n).subs(x, a) / factorial(n)

4𝑒5

3
Content last modified on 24 July 2023.

31

See a problem? Tell us or edit the source.

32

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20compute%20the%20Taylor%20series%20for%20a%20function/Python,%20using%20SymPy.ipynb

How to compute the error bounds on a Taylor approximation

Description
A Taylor series approximation of degree 𝑛 to the function 𝑓(𝑥), centered at the point 𝑥 = 𝑎, has an error
bounded by the following formula, where 𝑐 ranges over all points between 𝑥 = 𝑎 and the point 𝑥 = 𝑥0 at
which we will be applying the approximation.

|𝑥0 − 𝑎|𝑛+1

(𝑛 + 1)! max |𝑓 (𝑛+1)(𝑐)|

How can we compute this error bound using mathematical software?

Related tasks:

• How to compute the Taylor series for a function

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s create a simple example. We’ll be approximating 𝑓(𝑥) = sin 𝑥 centered at 𝑎 = 0 with a Taylor series
of degree 𝑛 = 5. We will be applying our approximation at 𝑥0 = 1. What is the error bound?

var('x')
formula = sin(x)
a = 0
x_0 = 1
n = 5

We will not ask SymPy to compute the formula exactly, but will instead have it sample a large number of
𝑐 values from the interval in question, and compute the maximum over those samples. (The exact solution
can be too hard for SymPy to compute.)

Get 1000 evenly-spaced c values:
cs = [Min(x_0,a) + abs(x_0-a)*i/1000 for i in range(1001)]
Create the formula |f^(n+1)(x)|:
formula2 = abs(diff(formula, x, n+1))
Find the max of it on all the 1000 values:
m = Max(*[formula2.subs(x,c) for c in cs])
Compute the error bound:
N(abs(x_0-a)**(n+1) / factorial(n+1) * m)

0.00116870970112208
The error is at most 0.00116871 ….

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

33

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20compute%20the%20error%20bounds%20on%20a%20Taylor%20approximation/Python,%20using%20SymPy.ipynb

How to do implicit differentiation

Description
Assume we have an equation in which 𝑦 cannot be isolated as a function of 𝑥. (The standard example is the
formula for the unit circle, 𝑥2 + 𝑦2 = 1.) We would still like to be able to compute the derivative of 𝑦 with
respect to 𝑥.

Related tasks:

• How to graph curves that are not functions

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s consider the example of the unit circle, 𝑥2 + 𝑦2 = 1.

To plot it, SymPy first expects us to move everything to the left-hand side of the equation, so in this case,
we would have 𝑥2 + 𝑦2 − 1 = 0.

We then use that left hand side to represent the equation as a single formula, and computue 𝑑𝑦
𝑑𝑥 using the

idiff function (standing for “implicit differentiation”).

var('x y')
formula = x**2 + y**2 - 1 # to represent x^2+y^2=1
idiff(formula, y, x)

−𝑥
𝑦

So in this case, 𝑑𝑦
𝑑𝑥 = − 𝑥

𝑦 .

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

34

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20do%20implicit%20differentiation/Python,%20using%20SymPy.ipynb

How to find the critical numbers of a function

Description
When trying to find the maximum and minimum values of a function, one of the main techniques in calculus
is to use the “critical numbers” of the function, which are the most important 𝑥 values to examine to find
maxima and minima. Can we find critical numbers for a single-variable function using software?

Related tasks:

• How to compute the domain of a function
• How to find the critical points of a multivariate function

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s create an example function to work with.

var('x')
formula = sqrt(x - 1) - x
formula

−𝑥 +
√

𝑥 − 1
Critical numbers come in two kinds. First, where is the derivative zero? Second, where is the derivative
undefined but the function is defined?

Let’s begin by finding where the derivative is zero. We’ll use the same techniques introduced in how to write
symbolic equations and how to solve symbolic equations.

derivative = diff(formula)
derivative

−1 + 1
2
√

𝑥 − 1

solve(Eq(derivative, 0))

[5
4]

So one critical number, where the derivative is zero, is 𝑥 = 5
4 .

Now where is the derivative defined but the function undefined? We compute the domain of both functions
and subtract them, using the techniques from how to compute the domain of a function.

from sympy.calculus.util import continuous_domain
f_domain = continuous_domain(formula, x, S.Reals)
deriv_domain = continuous_domain(derivative, x, S.Reals)
Complement(f_domain, deriv_domain)

35

{1}
So another critical number, where the function is defined but the derivative is not, is 𝑥 = 1.

Thus the full set of critical numbers for this function is {1, 5
4 }.

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

36

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20find%20the%20critical%20numbers%20of%20a%20function/Python,%20using%20SymPy.ipynb

How to find the critical points of a multivariate function

Description
When trying to find the maximum and minimum values of a multivariate function, that is a function of
multiple real-valued inputs, one of the main techniques in calculus is to use the “critical points” of the
function, which are the most important inputs to examine to find maxima and minima. Can we find critical
points for a multivariate function using software?

Related tasks:

• How to find the critical numbers of a function (single-variable version)

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s create an example function to work with.

var('x y')
formula = x**3 + x*y - 3*y**2
formula

𝑥3 + 𝑥𝑦 − 3𝑦2

Critical numbers come in two kinds. First, where are all partial derivatives zero? Second, where is a
derivative undefined but the function is defined?

Let’s begin by finding where both partial derivatives are zero. Recall that a common notation for the partial
derivatives is 𝑓𝑥 and 𝑓𝑦. We’ll use the same techniques introduced in how to write symbolic equations and
how to solve symbolic equations.

f_x = diff(formula, x)
f_y = diff(formula, y)
f_x, f_y

(3𝑥2 + 𝑦, 𝑥 − 6𝑦)
We can set both equal to zero and solve those equations simultaneously as follows. In other words, SymPy
will solve 3𝑥2 + 𝑦 = 0 and 𝑥 − 6𝑦 = 0 simultaneously for us.

solve([f_x, f_y]) # that is, f_x=0 and f_y=0

[{𝑥 ∶ − 1
18 , 𝑦 ∶ − 1

108} , {𝑥 ∶ 0, 𝑦 ∶ 0}]

That output indicates two critical numbers, one at (− 1
18 , − 1

108) and one at (0, 0).
Now where is the derivative defined but the function undefined? Unfortunately, SymPy cannot help us
compute the domain of multivariate functions. You will need to do that yourself. (In this case, the function
is defined for all real values of 𝑥 and 𝑦.)

37

But SymPy can help us classify the two critical numbers above. Are they maxima, minima, or saddle points?
We use the discriminant, built from the second partial derivatives, 𝐷 = 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓2

𝑥𝑦.

f_xx = diff(formula, x, x)
f_yy = diff(formula, y, y)
f_xy = diff(formula, x, y)
D = f_xx*f_yy - f_xy**2
D

−36𝑥 − 1
We can then evaluate the discriminant on our critical points. Recall the following rules from multivariate
calculus:

• If 𝐷 < 0 then the critical point is a saddle point.
• If 𝐷 > 0 and 𝑓𝑥𝑥 < 0 then the critical point is a maximum.
• If 𝐷 > 0 and 𝑓𝑥𝑥 > 0 then the critical point is a minimum.

Let’s begin by checking (− 1
18 , − 1

108).

D.subs(x, -1/18).subs(y, -1/108)

1.0
Since 𝐷 > 0 we must check 𝑓𝑥𝑥.

f_xx.subs(x, -1/18).subs(y, -1/108)

−0.333333333333333
Because 𝑓𝑥𝑥 < 0, the point (− 1

18 , − 1
108) is a maximum. Now we check (0, 0).

D.subs(x, 0).subs(y, 0)

−1
Because 𝐷 < 0, the point (0, 0) is a saddle point.

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

38

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20find%20the%20critical%20points%20of%20a%20multivariate%20function/Python,%20using%20SymPy.ipynb

How to write and evaluate indefinite integrals

Description
The antiderivative of a function is expressed using an indefinite integral, as in

∫ 𝑓(𝑥) 𝑑𝑥.

How can we write and evaluate indefinite integrals using software?

Related tasks:

• How to compute the derivative of a function
• How to write and evaluate definite integrals
• How to write and evaluate Riemann sums

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s choose an example formula whose antiderivative we will compute.

var('x')
formula = 3*sqrt(x)
formula

3√𝑥
Use the Integral function to build a definite integral without evaluating it. The second parameter is the
variable with respect to which you’re integrating.

Integral(formula, x)

∫ 3√𝑥 𝑑𝑥

Use the integrate function to perform the integration, showing the answer.

integrate(formula, x)

2𝑥 3
2

integrate(formula, x) + var('C') # same, but with a constant of integration

𝐶 + 2𝑥 3
2

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

39

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20write%20and%20evaluate%20indefinite%20integrals/Python,%20using%20SymPy.ipynb

How to write and evaluate definite integrals

Description
The area under a curve can be computed using a definite integral. To compute the area above the 𝑥 axis
and under 𝑓(𝑥), from 𝑥 = 𝑎 to 𝑥 = 𝑏, we write

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

How can we write and evaluate definite integrals using software?

Related tasks:

• How to compute the derivative of a function
• How to write and evaluate indefinite integrals
• How to write and evaluate Riemann sums

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s compute the area under sin 𝑥 from 𝑥 = 0 to 𝑥 = 𝜋.

We use the same technique as in how to write and evaluate indefinite integrals, except that we add the lower
and upper bounds together with 𝑥, as shown below.

var('x')
formula = sin(x)
Integral(formula, (x,0,pi))

𝜋

∫
0

sin (𝑥) 𝑑𝑥

The above code just displays the definite integral. To evaluate it, use the integrate command.

integrate(formula, (x,0,pi))

2
Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

40

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20write%20and%20evaluate%20definite%20integrals/Python,%20using%20SymPy.ipynb

How to write and evaluate Riemann sums

Description

In calculus, a definite integral ∫𝑏
𝑎 𝑓(𝑥) 𝑑𝑥 can be approximated by a “Reimann sum,” which adds the areas

of 𝑛 rectangles that sit under the curve 𝑓 . How can we write a Reimann sum using software?

Related tasks:

• How to write and evaluate definite integrals
• How to write and evaluate indefinite integrals

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

In mathematics, we would write a Riemann sum approximating ∫𝑏
𝑎 𝑓(𝑥) 𝑑𝑥 as follows.

lim
𝑛→∞

𝑛
∑
𝑖=1

𝑓(𝑎 + 𝑖Δ𝑥) ⋅ Δ𝑥,

where Δ𝑥 is defined as 𝑏−𝑎
𝑛 .

This is easiest to understand if we break the Python code for it into several smaller parts. First, let’s choose
a formula we will use as 𝑓(𝑥) and the interval [𝑎, 𝑏] in question.

var('x a b i n') # We need all these variables, as you can see above.
formula = x**2 # Let's pick f(x)=x^2 as a simple example.
delta_x = (a - b) / n # Define delta x.
delta_x

𝑎 − 𝑏
𝑛

The input 𝑎 + 𝑖Δ𝑥 (which we will substitute into our formula 𝑓(𝑥)) varies along the 𝑥 axis between 𝑎 and 𝑏
as 𝑖 counts from 1 to 𝑛. Each 𝑓(𝑎 + 𝑖Δ𝑥) is the height of a rectangle whose right edge is at 𝑎 + 𝑖Δ𝑥.

input = a + i*delta_x # Input i to substitute into f(x)
height = formula.subs(x, input) # Height of rectangle i
area = delta_x * height # Area of rectangle i
total = Sum(area, (i,1,n)) # Total area of all rectangles,
total # which is the Reimann sum.

𝑛
∑
𝑖=1

(𝑎 − 𝑏) (𝑎 + 𝑖(𝑎−𝑏)
𝑛)

2

𝑛

We can actually use that formula to estimate ∫𝑏
𝑎 𝑓(𝑥) 𝑑𝑥 if we substitute in actual values for 𝑎, 𝑏, and 𝑛. Let’s

estimate the area from 𝑎 = 1 to 𝑏 = 3 with 𝑛 = 10 rectangles. Recall techniques for evaluating summations
discussed in how to define a mathematical series.

41

total.subs(a, 1).subs(b, 3).subs(n, 10).doit()

−17
25

We can also use a Riemann sum to get the exact area by taking a limit as 𝑛 → ∞.

Reimann_sum = total.subs(a, 1).subs(b, 3) # leave n as a variable
Reimann_sum = Reimann_sum.doit() # simplify the summation
limit(Reimann_sum, n, oo) # take a limit as n -> infinity

−2
3

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

42

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20write%20and%20evaluate%20Riemann%20sums/Python,%20using%20SymPy.ipynb

How to write an ordinary differential equation

Description
Differential equations are equations that contain differentials like 𝑑𝑦 and 𝑑𝑥, often in the form 𝑑𝑦

𝑑𝑥 . How can
we write them using software?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

The following code tells SymPy that 𝑥 is a variable and that 𝑦 is a function of 𝑥. It then expresses 𝑑𝑦
𝑑𝑥 as the

derivative of 𝑦 with respect to 𝑥.

var('x') # Let x be a variable.
y = Function('y')(x) # Literally, y is a function, named y, based on x.
dydx = Derivative(y, x) # How to write dy/dx.
dydx # Let's see how SymPy displays dy/dx.

𝑑
𝑑𝑥𝑦(𝑥)

Let’s now write a very simple differential equation, 𝑑𝑦
𝑑𝑥 = 𝑦.

As with how to do implicit differentiation, SymPy expects us to move everything to the left hand side of the
equation. In this case, that makes the equation 𝑑𝑦

𝑑𝑥 − 𝑦 = 0, and we will use just the left-hand side to express
our ODE.

ode = dydx - y
ode

−𝑦(𝑥) + 𝑑
𝑑𝑥𝑦(𝑥)

Content last modified on 24 July 2023.

See a problem? Tell us or edit the source.

43

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20write%20an%20ordinary%20differential%20equation/Python,%20using%20SymPy.ipynb

How to solve an ordinary differential equation

Description
Elsewhere we’ve seen how to write an ordinary differential equation. Once one is written, how can we ask
software to solve it? And since ODEs often come with initial conditions that impact the solution, how can
we include those as well?

Solution in Python using SymPy
This answer assumes you have imported SymPy as follows.

from sympy import * # load all math functions
init_printing(use_latex='mathjax') # use pretty math output

Let’s re-use here the code from how to write an ordinary differential equation, to write 𝑑𝑦
𝑑𝑥 = 𝑦.

var('x')
y = Function('y')(x)
dydx = Derivative(y, x)
ode = dydx - y
ode

−𝑦(𝑥) + 𝑑
𝑑𝑥𝑦(𝑥)

You can solve an ODE by using the dsolve command.

solution = dsolve(ode)
solution

𝑦(𝑥) = 𝐶1𝑒𝑥

If there are initial conditions that need to be substituted in for 𝑥 and 𝑦, it is crucial to substitute for 𝑦 first
and then 𝑥. Let’s assume we have the initial condition (3, 5). We might proceed as follows.

with_inits = solution.subs(y, 5).subs(x, 3)
with_inits

5 = 𝐶1𝑒3

solve(with_inits)

[5
𝑒3]

To substitute 𝐶1 = 5
𝑒3 into the solution, note that 𝐶1 is written as var('C1').

solution.subs(var('C1'), 5/E**3)

𝑦(𝑥) = 5𝑒𝑥

𝑒3

Content last modified on 24 July 2023.

44

See a problem? Tell us or edit the source.

45

https://github.com/nathancarter/how2data/issues/new/choose
https://github.com/nathancarter/how2data/tree/main/database/tasks/How%20to%20solve%20an%20ordinary%20differential%20equation/Python,%20using%20SymPy.ipynb

	Contents
	Basic Symbolic Mathematics
	Functions and Graphs
	Equations and Systems
	Limits, Sequences, and Series
	Differentiation
	Antidifferentiation
	Differential Equations

	How to do basic mathematical computations
	Description
	Solution in Python using SymPy

	How to create symbolic variables
	Description
	Solution in Python using SymPy

	How to substitute a value for a symbolic variable
	Description
	Solution in Python using SymPy

	How to compute the domain of a function
	Description
	Solution in Python using SymPy

	How to graph mathematical functions
	Description
	Solution in Python using SymPy

	How to graph curves that are not functions
	Description
	Solution in Python using SymPy

	How to write a piecewise-defined function
	Description
	Solution in Python using SymPy

	How to graph a two-variable function as a surface
	Description
	Solution in Python using SymPy

	How to write symbolic equations
	Description
	Solution in Python using SymPy

	How to solve symbolic equations
	Description
	Solution in Python using SymPy

	How to isolate one variable in an equation
	Description
	Solution in Python using SymPy

	How to compute the limit of a function
	Description
	Solution in Python using SymPy

	How to define a mathematical sequence
	Description
	Solution in Python using SymPy

	How to graph mathematical sequences
	Description
	Solution in Python using SymPy and Matplotlib

	How to define a mathematical series
	Description
	Solution in Python using SymPy

	How to compute the derivative of a function
	Description
	Solution in Python using SymPy

	How to compute the Taylor series for a function
	Description
	Solution in Python using SymPy

	How to compute the error bounds on a Taylor approximation
	Description
	Solution in Python using SymPy

	How to do implicit differentiation
	Description
	Solution in Python using SymPy

	How to find the critical numbers of a function
	Description
	Solution in Python using SymPy

	How to find the critical points of a multivariate function
	Description
	Solution in Python using SymPy

	How to write and evaluate indefinite integrals
	Description
	Solution in Python using SymPy

	How to write and evaluate definite integrals
	Description
	Solution in Python using SymPy

	How to write and evaluate Riemann sums
	Description
	Solution in Python using SymPy

	How to write an ordinary differential equation
	Description
	Solution in Python using SymPy

	How to solve an ordinary differential equation
	Description
	Solution in Python using SymPy

